Efficiency Enhancement of Neural Network with Phase Only Correlation

نویسنده

  • Usman Qayyum
چکیده

The research work is carried out to enhance the recognition accuracy of neural network with Phase Only Correlation (POC) and reduce the time required for POC by refining its input. In this research work neural network has not been directly used for recognition but for the minimization of the search space. The fusion of neural network with POC is tested on face recognition application to validate the proposed idea. Neural network helps to prune all those faces of subjects which have lower response values from the neurons output and pass it to POC for post processing. The first five high response values of neuron are selected from forty responses for POC post processing. This amalgamation of data from two recognition techniques have enabled us to look into the new dimension of not only improving the accuracy of neural network but also to decrease the computational and time cost of phase only correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Dispersed Phase Holdup in the Kühni Extraction Column Using a New Experimental Correlation and Artificial Neural Network

In this work, the dispersed phase holdup in a Kühni extraction column is predicted using intelligent methods and a new empirical correlation. Intelligent techniques, including multilayer perceptron and radial basis functions network are used in the prediction of the dispersed phase holdup. To design the network structure and train and test the networks, 174 sets of experimental data are used. T...

متن کامل

Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm

In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...

متن کامل

Adsorption of Fe (II) from Aqueous Phase by Chitosan: Application of Physical Models and Artificial Neural Network for Prediction of Breakthrough

Removal of Fe (II) from aqueous media was investigated using chitosan as the adsorbent in both batch and continuous systems. Batch experiments were carried out at initial concentration range of 10-50 mg/L and temperature range of 20–40˚C. In batch experiments, maximum adsorption capacity of 28.7 mg/g and removal efficiency of 93% were obtained. Adsorption equilibrium data were well-fitted with ...

متن کامل

Reconstruction of the neural network model of motor control for virtual C.elegans on the basis of actual organism information

Introduction: C. elegans neural network is a good sample for neural networks studies, because its structural details are completely determined. In this study, the virtual neural network of this worm that was proposed by Suzuki et al. for control of movement was reconstructed by adding newly discovered synapses for each of these network neurons. These synapses are newly discovered in the actu...

متن کامل

Using emotional intelligence to predict job stress: Artificial neural network and regression models

Introduction: These days, there is a consensus that emotional intelligence plays an important role in the success of individuals in different areas of life. Persons with higher emotional intelligence had lower stress in dealing with demands and pressures in the workplace. The purpose of this study was to use artificial neural network to predict job stress and to compare the performance of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JDCTA

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008